Chapter 26

Default inheritance and derivational
morphology

Stefan Miiller
Humboldt University Berlin

This paper is a contribution to the discussion whether argument structure constructions
should be treated phrasally or lexically. While lexical models can explain the interaction
between argument structure constructions and derivational morphology in a straight-
forward way, the analysis of this interaction is a desideratum for phrasal analyses. This
paper deals with the question whether type hierarchies together with default inheritance
can be used to describe derivational morphology. Given the challenges provided by
Krieger & Nerbonne (1993) it seems impossible to do derivation without embedding (that
is something like morphological phrase structure rules with mother/daughter relations
or lexical rules/constructions with an input/daughter and an output/mother) and as will
become clear the price for doing derivation with default inheritance is very high indeed.

1 Introduction

Goldberg (1995) and Goldberg & Jackendoff (2004) argue that Resultative Construc-
tions like those in (1) are best described by phrasal rules that contribute the part of
meaning that is specific to such resultative constructions.

(1) a. The pond froze solid.

1T thank Ann Copestake for discussion and John Bateman, Dorothee Beermann, Hans-Ulrich Krieger,
and Andrew Mclntyre for discussion and for comments on earlier versions of Miiller (2006), research
that is related to the present paper. An earlier version of this paper was presented at the 2nd Inter-
national Workshop on Constraint-Based Grammar, which was held in 2005 in Bremen. I thank all
participants for discussion.

While preparing this paper I extended the explanations and added and updated references. I
thank Antonio Machicao y Priemer for detailed comments which resulted in many clarifications in
the revised paper. The revised paper is 21 pages long, which is way outside of the page limit of
the present collection. So I decided to publish the earlier version with all its shortcomings. The in-
terested reader is referred to the extended version, which can be downloaded at http://hpsg.fu-
berlin.de/~stefan/Pub/default-morph.html.

Stefan Miiller

b. The gardener watered the flowers flat.
c. They drank the pub dry.

Authors who work in the framework of Construction Grammar (CxG) usually cap-
ture generalizations about Constructions in inheritance hierarchies (Kay & Fillmore
1999; Goldberg 2003). Goldberg assumes that generalizations regarding active, pas-
sive, and middle variants of the Resultative Construction can be expressed this way.
However, there are other ways to realize Resultative Constructions and it is not ob-
vious how such patterns should be treated. The German examples in (2) show, that
resultative constructions and derivational morphology interact (Miiller 2002; 2003;
2006):

(2) a. -ung nominalizations:

Leerfischung® ‘empty.fishing’, Kaputterschlieffung® ‘broken.development’,
Kaputtmilitarisierung* ‘broken.militarization’, Gelbfirbung®
‘yellow.dyeing’

b. -er nominalizations:
Totschliger® ‘dead.beater’ or ‘cudgel’, SFB-Gesundbeter’
‘SFB.healthy.prayer’,
Ex-Bierflaschenleertrinker® ‘ex.beer.bottles.empty.drinker’

c. marginally in Ge- -e nominalizations:
Totgeschlage®’ ‘beating.to.death’

So if all generalizations about resultative constructions are captured in inheritance
hierarchies, the derivational facts should be covered that way too.

Krieger & Nerbonne (1993) showed that derivational morphology cannot be mod-
eled using (simple) inheritance hierarchies since recursion as for example in Vor-
vorvorversion ‘preprepreversion’ cannot be covered in inheritance networks (Krieger
& Nerbonne 1993). Since information about the prefix vor- is contained in Vorver-
sion inheriting a second time from vor- would not add anything. Secondly, in an
inheritance-based approach to derivation, it cannot be explained why undoable has
the two readings that correspond to the two bracketings in (3), since inheriting in-
formation in different orders does not change the result.

(3) a. [un- [do -able]]
b. [[un- do] -able]
Proponents of CxG often refer to default inheritance (Goldberg 1995; Michaelis &

Ruppenhofer 2001) and Michaelis & Ruppenhofer (2001) explicitely suggest an anal-
ysis of derivational morphology that is based on default inheritance. For the class

2 taz, 20-06-1996, p. 6.

3 taz, 02-09-1987, p. 8.

4 taz, 19-04-1990, p. 5.

5 taz, 14-08-1995, p. 3.

% taz, Bremen, 24-05-1996, p. 24 and taz, Hamburg 21-07-1999, p. 22
7 taz, 25-08-1989, p. 20.

8 taz, 13/14-01-2001, p. 32.

9 Fleischer & Barz (1995: 208).

254

26 Default inheritance and derivational morphology

of be-Verbs they assume the Applicative Construction which derives for instance be-
laden from laden by overriding incompatible information of the base verb by material
inherited from the be- Construction (p.59).

This paper deals with the question whether type hierarchies together with default
inheritance can be used to describe derivational morphology. Given the challenges
provided by Krieger & Nerbonne (1993) it seems impossible to do derivation with-
out embedding and as will become clear the price for doing derivation with default
inheritance is very high indeed.

A full account of derivational morphology has to explain the following facts:

« derivation may change the phonological form (Les+bar+keit ‘readability’);

« derivation may change the syntactic category:
Les+bar+keit ‘readability’ =V — A — N;

« derivation changes the semantic contribution:
lesen(x,y) — modal(lesen(x,y)) — nominal(modal(lesen(x,y))).

The crucial point that has to be captured by every analysis is that there are pro-
ductive morphological patterns. This means that it is not sufficient to specify two
types in a type hierarchy and introduce explicitly a new subtype of the latter two
types. One could do this for instance for Lesbarkeit. The category of the verbal stem
and of all affixes would be specified as a default and a subtype for lesbar and Les-
barkeit is stipulated. In such a setting, the values that override defaults are stipulated
for all lexemes, they do not follow from any rule. This is not adequate since it does
not capture the productive aspect of many morphology patterns. What is needed
is some way to automatically compute subtypes that correspond to stems or words.
This can be done by an automatic closure computation that introduces new types
for all compatible types specified in a type hierarchy. Such online type computation
was suggested by Kay (2002) for phrasal Constructions in CxG and by Koenig (1999)
in the framework of HPSG. However, such online computation makes it necessary
to specify the default information in appropriate ways and to have some way to de-
termine automatically in which ways default information may be overridden. In the
remainder of the paper, I show how a default-based analysis has to be set up in order
to capture the productive aspects of derivational morphology. I use the default logic
described in Lascarides & Copestake (1999). In this formalization default information
is explicitely marked, so the hierarchy may be set up in a way that it is clear which
information overrides which other information.

2 Derivational morphology with default inheritance

The following subsection deals with changes in phonology, Subsection 2.2 deals with
changes in syntactic category, and Subsection 2.3 captures semantics.

255

Stefan Miiller

2.1 Changes in phonology

Villavicencio (2000: 86-87) suggested a way to extend the length of a list by using
default unification. The trick is to mark the end of a list as default information. This
information maybe overridden by inheritance from another type that specifies a con-
flicting value for the list end. For instance, the stem les can be specified as follows:

les

ne-list
4) PHON-H [HD les
t

TL /e-lis

e-list stands for empty list and ne-list for non-empty list.
Combining this stem with the suffix -bar in (5a) yields the representation in (5b):

bar [les A bar
ne-list ne-list
(5) a ne-list b HD les .
" |PHON-H | | up par " | PHON-H ne-list
TL /e-list TL | HD bar.
TL /e-list

The PHON-H|TL value of (4) is overridden by the value in (5a). The new end of the list
is in turn marked as default.

There is one little problem and one big problem with this approach. The little
problem is that the elements in the PHON-H list are in the wrong order if the affix is
a prefix. Consider the noun Vorversion. Since Vor- is a prefix it should appear before
Version, but if we use the mechanism described above, affixes are appended at the end
of the pHON-H list. This problem could be solved by making the values in the PHON-
H list more complex: if new material is added at the end of the list, information
about prefix/suffixhood is added as well. For a noun like Anfahrbarkeit as in Die
Anfahrbarkeit des Flughafens mufs gewdhrleistet sein “The accessibility of the airport
by car must be guaranteed’, one would get (fahr, an-prefix, bar-suffix, keit-suffix).
We would then use the following relational constraint that maps this list onto the
actual phonological realization.

(6) compute_phon({), [, d).
prefix .
compute_phon((|, @ 21,3 4) if

compute_phon(2], <> @ [31,4]).
suffix .
compute_phon({ |, © [21.33) if

compute_phon(2], 3] & < >,)

256

26 Default inheritance and derivational morphology

The symbol ‘@’ stands for append, a relation that concatenates two lists. compute_-
phon is defined recursively. The second and the third clause take one element - a
prefix or a suffix, respectively — from the beginning of a list and then call compute_-
phon with a shorter list ([2]). The first clause ends the recursion. If the first argument
contains an empty list, all affixes are processed and the second and the third argument
are identified ([1]). When compute_phon is called initially the second argument is the
root, e.g., fahr in Anfahrbarkeit. The list of affixes is passed to compute_phon as the
first argument. If this list starts with a prefix, the pHON value of the prefix ([1]) is
appended to the value in the second slot ([3]) and the result ([[]) @ [3] is the second
argument of the recursive call of compute_phon. The third clause is for suffixes and
works parallel to the second clause, the only difference being that the phonology of
the suffix is appended to the second argument at the end. By recursively working
through the affix list in the first slot the list gets shorter while the list in the second
slot gets longer. When the recursion ends due to exhaustion of the list of affixes, the
phonological information is in the second slot. Clause one of compute_phon identifies
the second and the third slot of the relational constraint. Since the third slot is just
passed on in the second and third clause ([4]), the third slot will contain the result of
the pHON computation.

The value that is determined by the relational constraint is declared to be the pHON
value of the sign ([1]):

PHON
D pmonem |0 [prON] | | A compute-phon ([3],2],[])
TL

compute_phon takes the phonology of the root ([2]) as its second argument and the
remainder of the PHON-H list, which contains all the affixes, as its first argument ([3]).

This analysis also gets the bracketing problem in (3) right: for [un [do able]], we get
(do, able-suffix, un-prefix) and for [[un do] able], we get (do, un-prefix, able-suffix).
The phonology is the same in both cases, but the semantics differs. See Section 2.3
for the meaning representation.

While this solves the problem of ordering prefixes and suffixes, there remains an
even bigger problem. This problem has to do with the question when the pHON value
is determined. The computation of the pHON value has to happen at the interface
between the lexicon and syntax, that is, at the moment when it is clear that no further
affixes will be unified with the existing description. If one would have a PHON value
for the stem les, this PHON value would also be part of the unification of les and -
bar. 1f one computes the pHON value for lesbar one would get a conflict between
the value of les and the computed value lesbar. It would not be an option to leave
PHON values of stems underspecified and let the affix determine the pHON Vvalue of
the whole construction since it is possible to have more than one affix.

257

Stefan Miiller

2.2 Changes in part of speech

The change in part of speech can be explained in an analoguos fashion: the category
information is stored in an auxiliary list (caT-1) that is extended by the affix. A
path equation is used to identify the last element of the auxiliary list with the actual
category value (car). This path equation is specified to be default information. An
affix can override this information with an explicit path inequation and add a new
default path equation that points to a newly introduced element at the end of the
auxiliary list.

2.3 Changes in semantics

For the meaning representation similar tricks can be applied, a difference being that
we need embedding. Let us consider the noun Vorversion. The lexical item for Version
is given in (8):

[lex-version
ne-list
PHON-H |HD version
®) TL /e-list
ne-list
SEM HD version-rel
TL /e-list

This description says that the value of pHON-H is { Version) and that the value of
SEM is (version-rel). The important part of the definition above is that the TL value
is marked to be a default specification, i.e., this value may be overridden. Using lists
for the representation of semantic information is also crucial for the mechanisms
described below.

The following type for the prefix Vor- can be unified with the type lex-version. pref-
vor contains information about the second element of the pHON-H list and the sEm
list. The result of the unification of lex-version and pref-vor is given in (9b):

[lex-version A lex-vor i
ne-list
[prefvor T HD versz?Tz
r = ne-list
L |22 VT o TL |HD vor
PHON-H TL /e-list .
L TL / e-list
HD [1 . _
©) a] b. ne-list
- {vor—{e } HD [1] version-rel
ARGI [T .
TL ne-list
TL /e-list SEM vor-rel
- - - TL ARG1
TL /e-list

So the prefix Vor- extends the pHON-H list and adds its phonological information.
It also adds its semantic contribution and embeds the semantic contribution of the

258

26 Default inheritance and derivational morphology

type it was combined with ([I]). Of course the semantic representation in (9) is not
satisfying, since the sem list contains both a version-rel(X) and an embedded version-
rel(X), but only the representation vor-rel(version-rel(X)) is appropriate for Vorver-
sion; version-rel(X) is not. In the framework of Minimal Recursion Semantics (2005)
pointers are used to identify the main semantic contribution of a linguistic object.
This pointer would identify version-rel in the entry for Version and vor-rel in the
lexical entry of Vorversion. The path equation pointing to the semantic contribution
has to be specified as default information. An affix overrides this equation with a
non-default inequation and adds a new default equation pointing to the meaning
representation that it contributes.

3 Comments on defaults and recursion

Note that this analysis is basically a misuse of defaults. In classical knowledge rep-
resentation defaults are used to say things like the following: birds have wings and
they can fly. A penguin is a bird, it inherits the property of having wings from the
super concept, but it overrides the property of being able to fly. In the analysis of
derivation given above, a crucial property of a word, namely how it is pronounced, is
overridden. This overriding can occur an unbounded number of times. This amounts
to making a statement like the following: Vorvorvorversion is essentially Version ex-
cept that it is pronounced differently and means something different.

Whether or not one sees ways around this problem, there is a more serious prob-
lem, namely that the types above do not account for Vorvorversion. To account for
Vorvorversion we have to have a type that can be combined with structures that have
two elements on their PHON list:

[pref-vor-2
[HD vor
PHON-H | TL|TL [TL /e—list”
(10) HD
vor-rel
SEM L | HD |:ARG1 }
TL /e-list

This means that we have to have infinitely many entries for each prefix, since we do
not know the length of the lists of the stem the prefix combines with. For instance
if Vor- combines with An+kiindig+ung ‘announcement’, we would need a version of
Vor- that attaches itself to the end of a three element list. To form Vorvorankiindigung
we need another Vor- that attaches to an even longer list.

One can imagine a way to fix this: instead of giving a fixed path to the end of the
list in the definition of pref-vor or pref-vor-2, one could extend the formalism and
allow for regular expressions in type declarations. The star after TL in the following

259

Stefan Miiller

definition would mean that the feature description that follows it can be unified in
after any sequence of TLs. Since the HD of the description following TL" is specified
to be non-default information and all other PHON-H values are also non-default in-
formation, the expression following TL* can only be unified in at the very end of the
list.

pref-vor
(11) PHON-H [TL* |:HD vor t:”

TL /e-lis

Thus we get Vorversion and Vorankiindigung. In addition to the PHON-H specification
in (11), we would need a similar expression for the computation of the semantics.

But note what such an extension would lead to: if we unify the structure in (9b)
with a prefix Vor- that contains a regular expression as the one above, we do not get a
unique result. One possible result of unification would be the structure in (9b) itself,
ie., TL* is expanded as TL and another possible result would be the structure that
corresponds to Vorvorversion. This is the case where TL* is expanded as Tr|TL. This
means that if we “apply” the prefix Vor- to Vorversion we get two results, one being
spurious.

It could be argued that the spurious unification result mentioned above does not
do any harm if we use a closure computation, since elements computed twice are
not represented twice in the closure. But note that we have two independent regular
expressions: one for extending the pHON-H list and one for extending the sem list.
Therefore using such regular expressions would not only result in spurious unifica-
tion results it would also result in unwanted structures, for instance in a structure
with pHON value Vorversion and meaning vor-rel(vor-rel(version-rel(X))). To fix this,
one would have to introduce another extension of the formalism that allows one to
use a certain expansion of a regular expression at various places in a feature descrip-
tion.

4 Conclusion

This discussion has shown that default inheritance can be used to model derivation
only at a very high cost. To achieve this we need:

« an auxiliary list in which the affixes are collected in the order of application;

« a special marking of the elements in the list that indicates whether the item is
a prefix or a suffix;

« a complex relational constraint that walks through the auxiliary list and com-
putes the actual phonological form;

« regular expressions in type definitions that basically break everything we
know about unification;

260

26 Default inheritance and derivational morphology

« variables that help us to use the same regular expression in a feature descrip-
tion;

« and some sort of automatic unification of lexical types to get recursion.

« In addition to all this additional machinery, we have misused the concept of
defaults.

I consider this too high a price to pay. If one compares this approach to the simplicity
of embedding constructions like those usually used in lexical rule-based approaches,
it is clear which approach should be preferred. Such constructions can state whether
they are prefix or suffix constructions simply by putting constraints on the order in
which the phonology of the embedded object and the phonology contributed by the
construction are concatenated.

Concluding this paper, we can state that derivation cannot be done without embed-
ding in a reasonable way, the techniques developed here may be used to implement
other things in inheritance networks, though.

The analysis is implemented in the LKB system (Copestake 2002) and the code
of the implementation is available at http://hpsg.fu-berlin.de/~stefan/Pub/
default-morph.html.

References

Copestake, Ann. 2002. Implementing typed feature structure grammars (CSLI Lecture
Notes 110). Stanford, CA: CSLI Publications.

Copestake, Ann, Daniel P. Flickinger, Carl J. Pollard & Ivan A. Sag. 2005. Minimal
recursion semantics: an introduction. Research on Language and Computation 4(3).
281-332.

Fleischer, Wolfgang & Irmhild Barz. 1995. Wortbildung der deutschen Gegenwartssprache.
2nd edn. Tibingen: Max Niemeyer Verlag.

Goldberg, Adele E. 1995. Constructions: a Construction Grammar approach to argu-
ment structure (Cognitive Theory of Language and Culture). Chicago/London: The
University of Chicago Press.

Goldberg, Adele E. 2003. Words by default: the Persian complex predicate construc-
tion. In Elaine J. Francis & Laura A. Michaelis (eds.), Mismatch: form-function incon-
gruity and the architecture of grammar (CSLI Lecture Notes 163), 117-146. Stanford,
CA: CSLI Publications.

Goldberg, Adele E. & Ray S. Jackendoff. 2004. The English resultative as a family of
constructions. Language 80(3). 532-568.

Kay, Paul. 2002. An informal sketch of a formal architecture for Construction Gram-
mar. Grammars 5(1). 1-19.

Kay, Paul & Charles J. Fillmore. 1999. Grammatical Constructions and linguistic gen-
eralizations: the What’s X Doing Y? Construction. Language 75(1). 1-33.

Koenig, Jean-Pierre. 1999. Lexical relations (Stanford Monographs in Linguistics).
Stanford, CA: CSLI Publications.

261

Stefan Miiller

Krieger, Hans-Ulrich & John Nerbonne. 1993. Feature-based inheritance networks
for computational lexicons. In Briscoe, Copestake & de Paiva (eds.), Inheritance,
defaults, and the lexicon, 90-136. Cambridge University Press.

Lascarides, Alex & Ann Copestake. 1999. Default representation in constraint-based
frameworks. Computational Linguistics 25(1). 55-105.

Michaelis, Laura A. & Josef Ruppenhofer. 2001. Beyond alternations: a Constructional
model of the German applicative pattern (Stanford Monographs in Linguistics).
Stanford, CA: CSLI Publications.

Miiller, Stefan. 2002. Complex predicates: verbal complexes, resultative constructions,
and particle verbs in German (Studies in Constraint-Based Lexicalism 13). Stanford,
CA: CSLI Publications.

Miiller, Stefan. 2003. Solving the bracketing paradox: an analysis of the morphology
of German particle verbs. Journal of Linguistics 39(2). 275-325.

Miiller, Stefan. 2006. Phrasal or lexical constructions? Language 82(4). 850—-883.

Villavicencio, Aline. 2000. The use of default unification in a system of lexical types.
In Erhard W. Hinrichs, Walt Detmar Meurers & Shuly Wintner (eds.), Proceedings
of the ESSLLI-2000 Workshop on Linguistic Theory and Grammar Implementation,
81-96. Birmingham, UK.

262

